Instrumental Variables and GMM: Estimation and Testing
نویسندگان
چکیده
منابع مشابه
Enhanced routines for instrumental variables/GMM estimation and testing
We extend our 2003 paper on instrumental variables (IV) and GMM estimation and testing and describe enhanced routines that address HAC standard errors, weak instruments, LIML and k-class estimation, tests for endogeneity and RESET and autocorrelation tests for IV estimates.
متن کاملSpecification Testing in Nonparametric Instrumental Variables Estimation
In nonparametric instrumental variables estimation, the function being estimated is the solution to an integral equation. A solution may not exist if, for example, the instrument is not valid. This paper discusses the problem of testing the null hypothesis that a solution exists against the alternative that there is no solution. We give necessary and sufficient conditions for existence of a sol...
متن کاملEstimation with Many Instrumental Variables∗
Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is useful in empirical work, simulations, and in the asymptotic theory. Use of the corrected standard errors ...
متن کاملApplied Nonparametric Instrumental Variables Estimation
Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used identify ...
متن کاملInstrumental Variables / Method of Moments Estimation 80
The chapter discusses generalized method of moments (GMM) estimation methods for spatial models. Much of the discussion is on GMM estimation of Cliff-Ord-type models where spatial interactions are modeled in terms of spatial lags. The chapter also discusses recent developments on GMM estimation from data processes which are spatially α-mixing. I.R. Prucha Department of Economics, University of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata
سال: 2003
ISSN: 1536-867X,1536-8734
DOI: 10.1177/1536867x0300300101